Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Channels (Austin) ; 17(1): 2230776, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37389974

RESUMO

Missense mutations in the human secretary carrier-associated membrane protein 5 (SCAMP5) cause a variety of neurological disorders including neurodevelopmental delay, epilepsy, and Parkinson's disease. We recently documented the importance of SCAMP2 in the regulation of T-type calcium channel expression in the plasma membrane. Here, we show that similar to SCAMP2, the co-expression of SCAMP5 in tsA-201 cells expressing recombinant Cav3.1, Cav3.2, and Cav3.3 channels nearly abolished whole-cell T-type currents. Recording of intramembrane charge movements revealed that SCAMP5-induced inhibition of T-type currents is primarily caused by the reduced expression of functional channels in the plasma membrane. Moreover, we show that SCAMP5-mediated downregulation of Cav3.2 channels is essentially preserved with disease-causing SCAMP5 R91W and G180W mutations. Hence, this study extends our previous findings with SCAMP2 and indicates that SCAMP5 also contributes to repressing the expression of T-type channels in the plasma membrane.


Assuntos
Canais de Cálcio Tipo T , Humanos , Canais de Cálcio Tipo T/genética , Membrana Celular , Proteínas de Membrana/genética , Regulação para Baixo , Mutação
2.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37159021

RESUMO

Mitochondria critically rely on protein import and its tight regulation. Here, we found that the complex I assembly factor NDUFAF8 follows a two-step import pathway linking IMS and matrix import systems. A weak targeting sequence drives TIM23-dependent NDUFAF8 matrix import, and en route, allows exposure to the IMS disulfide relay, which oxidizes NDUFAF8. Import is closely surveyed by proteases: YME1L prevents accumulation of excess NDUFAF8 in the IMS, while CLPP degrades reduced NDUFAF8 in the matrix. Therefore, NDUFAF8 can only fulfil its function in complex I biogenesis if both oxidation in the IMS and subsequent matrix import work efficiently. We propose that the two-step import pathway for NDUFAF8 allows integration of the activity of matrix complex I biogenesis pathways with the activity of the mitochondrial disulfide relay system in the IMS. Such coordination might not be limited to NDUFAF8 as we identified further proteins that can follow such a two-step import pathway.


Assuntos
Dissulfetos , Complexo I de Transporte de Elétrons , Mitocôndrias , Endopeptidases , Mitocôndrias/metabolismo , Peptídeo Hidrolases , Transporte Biológico
3.
EMBO Rep ; 23(10): e54136, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35912982

RESUMO

N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.


Assuntos
Reparo do DNA , Dipeptidil Peptidases e Tripeptidil Peptidases , Aminopeptidases , DNA , Dano ao DNA , Dipeptídeos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Prolina , Rad51 Recombinase/genética , Serina
4.
Nat Chem Biol ; 16(5): 577-586, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32094923

RESUMO

Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease. Historically, therapeutics targeting RTKs have been identified using in vitro kinase assays. Due to frequent development of drug resistance, however, there is a need to identify more diverse compounds that inhibit mutated but not wild-type RTKs. Here, we describe MaMTH-DS (mammalian membrane two-hybrid drug screening), a live-cell platform for high-throughput identification of small molecules targeting functional protein-protein interactions of RTKs. We applied MaMTH-DS to an oncogenic epidermal growth factor receptor (EGFR) mutant resistant to the latest generation of clinically approved tyrosine kinase inhibitors (TKIs). We identified four mutant-specific compounds, including two that would not have been detected by conventional in vitro kinase assays. One of these targets mutant EGFR via a new mechanism of action, distinct from classical TKI inhibition. Our results demonstrate how MaMTH-DS is a powerful complement to traditional drug screening approaches.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteínas Quinases/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA Nucleotidiltransferases/genética , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Genes Reporter , Humanos , Luciferases/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Fosforilação/efeitos dos fármacos , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia
5.
J Biol Chem ; 294(18): 7308-7323, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30877195

RESUMO

The human lysosomal polypeptide ABC transporter TAPL (ABC subfamily B member 9, ABCB9) transports 6-59-amino-acid-long polypeptides from the cytosol into lysosomes. The subcellular localization of TAPL depends solely on its N-terminal transmembrane domain, TMD0, which lacks conventional targeting sequences. However, the intracellular route and the molecular mechanisms that control TAPL localization remain unclear. Here, we delineated the route of TAPL to lysosomes and investigated the determinants of single trafficking steps. By synchronizing trafficking events by a retention using selective hooks (RUSH) assay and visualizing individual intermediate steps through immunostaining and confocal microscopy, we demonstrate that TAPL takes the direct route to lysosomes. We further identified conserved charged residues within TMD0 transmembrane helices that are essential for individual steps of lysosomal targeting. Substitutions of these residues retained TAPL in the endoplasmic reticulum (ER) or Golgi. We also observed that for release from the ER, a salt bridge between Asp-17 and Arg-57 is essential. An interactome analysis revealed that Yip1-interacting factor homolog B membrane-trafficking protein (YIF1B) interacts with TAPL. We also found that YIF1B is involved in ER-to-Golgi trafficking and interacts with TMD0 of TAPL via its transmembrane domain and that this interaction strongly depends on the newly identified salt bridge within TMD0. These results expand our knowledge about lysosomal trafficking of TAPL and the general function of extra transmembrane domains of ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Membrana Celular/metabolismo , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína , Transporte Proteico , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...